Two-dimensional C / BN core / shell structures

Date
2011
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physical Review B
Print ISSN
2469-9950
Electronic ISSN
Publisher
American Physical Society
Volume
83
Issue
16
Pages
Language
English
Type
Article
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Single-layer core-shell structures consisting of graphene as the core and hexagonal boron nitride as the shell are studied using the first-principles plane-wave method within density functional theory. Electronic energy level structure is analyzed as a function of the size of both core and shell. It is found that the confinement of electrons in a two-dimensional graphene quantum dot is reduced by the presence of a boron nitride shell. The energy gap is determined by the graphene states. Comparison of round, hexagonal, rectangular, and triangular core-shell structures reveals that their electronic and magnetic states are strongly affected by their geometrical shapes. The energy level structure, energy gap, and magnetic states can be modified by external charging. The core part acts as a two-dimensional quantum dot for both electrons and holes. The of extra electron intake capacity of these quantum dots is shown to be limited by the Coulomb blockade in two dimensions. © 2011 American Physical Society.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)