Instability of a noncrystalline NaO2 film in Na-O2 batteries: The controversial effect of the RuO2 catalyst

Date

2018

Authors

Tovini, M. F.
Hong, M.
Park, J.
Demirtaş, M.
Toffoli, D.
Ustunel, H.
Byon, H. R.
Yılmaz, E.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Physical Chemistry C

Print ISSN

1932-7447

Electronic ISSN

1932-7455

Publisher

American Chemical Society

Volume

122

Issue

34

Pages

19678 - 19686

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
24
downloads

Series

Abstract

The unique electrochemical and chemical features of sodium-oxygen (Na-O2) batteries distinguish them from the lithium-oxygen (Li-O2) batteries. NaO2 as the main discharge product is unstable in the cell environment and chemically degrades, which triggers side products' formation and charging potential increment. In this study, RuO2 nanoparticles dispersed on carbon nanotubes (CNTs) are used as the catalyst for Na-O2 batteries to elucidate the effect of the catalyst on these complex electrochemical systems. The RuO2/CNT contributes to the formation of a poorly crystalline and coating-like NaO2 structure during oxygen reduction reaction, which is drastically different from the conventional micron-sized cubic NaO2 crystals deposited on the CNT. Our findings demonstrate a competition between NaO2 and side products' decompositions for RuO2/CNT during oxygen evolution reaction (OER). We believe that this is due to the lower stability of a coating-like NaO2 because of its noncrystalline nature and high electrode/electrolyte contact area. Although RuO2/CNT catalyzes the decomposition of side products at a lower potential (3.66 V) compared to CNT (4.03 V), it cannot actively contribute to the main electrochemical reaction of the cell during OER (NaO2 → Na+ + O2 + e-) because of the fast chemical degradation of the film NaO2 to the side products. Therefore, tuning the morphology and crystallinity of NaO2 by a catalyst is detrimental for the Na-O2 cell performance and it should be taken into account for the future applications.

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)