Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations

Date

2011

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
29
downloads

Citation Stats

Series

Abstract

In P3HT:PCBM based organic solar cells we propose and demonstrate numerically plasmonic backcontact grating architectures for strong optical absorption enhanced in both transverse-magnetic and transverse-electric polarizations. Even when the active material is partially replaced by the metallic grating (without increasing the active layer film thickness), we show computationally that the light absorption in thin-film P3HT:PCBM is increased by a maximum factor of similar to 21% considering both polarizations under AM1.5G solar radiation and over a half-maximum incidence angle of 45 degrees (where the enhancement drops to its half) compared to the same cell without a grating. This backcontact grating outperforms the typical plasmonic grating placed in PEDOT:PSS layer. (C)2011 Optical Society of America.

Source Title

Optics Express

Publisher

Optical Society of America

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English