Smooth and inclined surface locomotion and obstacle scaling of a C-legged miniature modular robot

buir.contributor.authorMahkam, Nima
buir.contributor.authorYılmaz, Talip Batuhan
buir.contributor.authorÖzcan, Onur
buir.contributor.orcidMahkam, Nima|0000-0001-5450-4624
buir.contributor.orcidÖzcan, Onur|0000-0002-3190-6433
dc.citation.epage6en_US
dc.citation.spage1en_US
dc.contributor.authorMahkam, Nima
dc.contributor.authorYılmaz, Talip Batuhan
dc.contributor.authorÖzcan, Onur
dc.coverage.spatialNew Haven, CT, USAen_US
dc.date.accessioned2022-01-31T07:45:16Z
dc.date.available2022-01-31T07:45:16Z
dc.date.issued2021-07-12
dc.departmentDepartment of Mechanical Engineeringen_US
dc.descriptionConference Name: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft)en_US
dc.descriptionDate of Conference: 12-16 April 2021en_US
dc.description.abstractThis work investigates the locomotion of a modular C-legged miniature robot with soft or rigid backbones on smooth, rough, and inclined terrain. SMoLBot-C is a C-legged miniature robot with soft or rigid backbones and foldable modules. The robot's climbing capabilities with soft and rigid C-legs and different backbones on rough terrain with obstacles and the robot's mobility on an inclined surface are compared. Our results show that the C-legged robot with soft legs and soft backbones can climb up to a higher obstacle, and walk on surfaces with higher inclination angles compared to the same robot with rigid legs and backbones, regardless of the number of modules (legs). Additionally, a velocity comparison study using SMoLBot-C operating at two different gaits is conducted. The results show that the robot with soft legs and compliant-I backbones operating with trot gait possesses the highest velocity compared to the other robots with similar leg numbers. Moreover, the effect of a compliant tail on the robot's locomotion on smooth and rough terrains is investigated, where the results show that the robot with the compliant tail is capable of walking on surfaces with higher inclination angles compared to the same robot without a tail. Furthermore, adding a tail to the two-legged SMoLBot-C doubles the maximum scalable obstacle height; the robot with a tail can climb up an obstacle 2 times higher than a module's height. Locomotion analysis in this manuscript provides a better insight into C-legged miniature robots' locomotion with soft or rigid legs while the modular connections' structural stiffness varies from rigid to soft.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2022-01-31T07:45:16Z No. of bitstreams: 1 Smooth_and_Inclined_Surface_Locomotion_and_Obstacle_Scaling_of_a_C-Legged_Miniature_Modular_Robot.pdf: 8375872 bytes, checksum: 4ad0dd820a5c933bd3bc0b13612eb41c (MD5)en
dc.description.provenanceMade available in DSpace on 2022-01-31T07:45:16Z (GMT). No. of bitstreams: 1 Smooth_and_Inclined_Surface_Locomotion_and_Obstacle_Scaling_of_a_C-Legged_Miniature_Modular_Robot.pdf: 8375872 bytes, checksum: 4ad0dd820a5c933bd3bc0b13612eb41c (MD5) Previous issue date: 2021-07-12en
dc.identifier.doi10.1109/RoboSoft51838.2021.9479218en_US
dc.identifier.eisbn978-1-7281-7713-7
dc.identifier.isbn978-1-7281-7714-4
dc.identifier.urihttp://hdl.handle.net/11693/76899
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://dx.doi.org/10.1109/RoboSoft51838.2021.9479218en_US
dc.source.titleIEEE International Conference on Soft Robotics (RoboSoft)en_US
dc.subjectSoft robot materials and designen_US
dc.subjectCellular and modular robotsen_US
dc.subjectLegged robotsen_US
dc.titleSmooth and inclined surface locomotion and obstacle scaling of a C-legged miniature modular roboten_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smooth_and_Inclined_Surface_Locomotion_and_Obstacle_Scaling_of_a_C-Legged_Miniature_Modular_Robot.pdf
Size:
7.99 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: