Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Herein, hydroxypropyl-beta-cyclodextrin (HPCD) inclusion complex (IC) of a hydrophobic drug, sul- fisoxazole (SFS) was incorporated in hydroxypropyl cellulose (HPC) nanofibers (HPC/SFS/HPCD-IC-NF) via electrospinning. SFS/HPCD-IC was characterized by DSC to investigate the formation of inclusion complex and the stoichiometry of the complex was determined by Job’s plot. Modeling studies were also performed on SFS/HPCD-IC using ab initio technique. SEM images depicted the defect free uniform fibers and confirmed the incorporation of SFS/HPCD-IC in nanofibers did not alter the fiber morphology. XRD analyses showed amorphous distribution of SFS/HPCD-IC in the fiber mat. Release studies were performed in phosphate buffered saline (PBS). The results suggest higher amount of SFS released from HPC/SFS/HPCD-IC-NF when compared to free SFS containing HPC nanofibers (HPC/SFS-NF). This was attributed to the increased solubility of SFS by inclusion complexation. Sandwich configurations were prepared by placing HPC/SFS/HPCD-IC-NF between electrospun PCL nanofibrous mat (PCL-HPC/SFS/HPCD-IC-NF). Consequently, PCL-HPC/SFS/HPCD-IC-NF exhibited slower release of SFS as compared with HPC/SFS/HPCD-IC-NF. This study may provide more efficient future strategies for developing delivery systems of hydrophobic drugs.