Consensus as a Nash equilibrium of a dynamic game

Date

2016

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
34
downloads

Citation Stats

Series

Abstract

Consensus formation in a social network is modeled by a dynamic game of a prescribed duration played by members of the network. Each member independently minimizes a cost function that represents his/her motive. An integral cost function penalizes a member's differences of opinion from the others as well as from his/her own initial opinion, weighted by influence and stubbornness parameters. Each member uses its rate of change of opinion as a control input. This defines a dynamic non-cooperative game that turns out to have a unique Nash equilibrium. Analytic explicit expressions are derived for the opinion trajectory of each member for two representative cases obtained by suitable assumptions on the graph topology of the network. These trajectories are then examined under different assumptions on the relative sizes of the influence and stubbornness parameters that appear in the cost functions.

Source Title

Proceedings of the 12th International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2016

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English