Hardware implementation of Fano Decoder for polarization-adjusted convolutional (PAC) codes

Date

2022-06

Editor(s)

Advisor

Arıkan, Erdal

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
7
views
62
downloads

Series

Abstract

Polarization-adjusted convolutional (PAC) codes are a new class of error-correcting codes that have been shown to achieve near-optimum performance. By combining ideas from channel polarization and convolutional coding, PAC codes create an overall encoding transform that achieves a performance near the information-theoretic limits at short block lengths. In this thesis we propose a hardware implementation architecture for Fano decoding of PAC codes. First, we introduce a new variant of Fano algorithm for decoding PAC codes which is suitable for hardware implementation. Then we provide the hardware diagrams of the sub-blocks of the proposed PAC Fano decoder and an estimate of their hardware complexity and propagation delay. We also introduce a novel branch metric unit for sequential decoding of PAC codes which is capable of calculating the current and previous branch metric values online, without requiring any storage element or comparator. We evaluate the error-correction performance of the proposed decoder on FPGA and its hardware characteristics on ASIC with TSMC 28 nm 0.72 V library. We show that, for a block length of 128 and a message length of 64, the proposed decoder can be clocked at 500 MHz and achieve approximately 38.1 Mb/s information throughput at 3.5 dB signal-to-noise ratio with a power consumption of 3.85 mW.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)