Förster-type nonradiative energy transfer for assemblies of arrayed nanostructures: confinement dimension vs stacking dimension

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage4958en_US
dc.citation.issueNumber9en_US
dc.citation.spage4951en_US
dc.citation.volumeNumber118en_US
dc.contributor.authorHernandez-Martinez, P. L.en_US
dc.contributor.authorGovorov, A. O.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2015-07-28T12:03:16Z
dc.date.available2015-07-28T12:03:16Z
dc.date.issued2014-02-11en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractForster-type nonradiative energy transfer (NRET) provides us with the ability to transfer excitation energy between proximal nanostructures with high efficiency under certain conditions. Nevertheless, the well-known Forster theory was developed for the case of a single donor (e.g., a molecule, a dye) together with single acceptor. There is no complete understanding for the cases when the donors and the acceptors are assembled in nanostructure arrays, though there are special cases previously studied. Thus, a comprehensive theory that models Forster-type NRET for assembled nanostructure arrays is required. Here, we report a theoretical framework of generalized theory for the Forster-type NRET with mixed dimensionality in arrays. These include combinations of arrayed nanostructures made of nanoparticles (NPs) and nanowires (NWs) assemblies in one-dimension (1D), two-dimension (2D), and three-dimension (3D) completing the framework for the transfer rates in all possible combinations of different confinement geometries and assembly architectures, we obtain a unified picture of NRET in assembled nanostructures arrays. We find that the generic NRET distance dependence is modified by arraying the nanostructures. For an acceptor NP the rate distance dependence changes from gamma alpha d(-6) to gamma alpha d(-5) when they are arranged in a ID stack, and to gamma alpha d(-4) when in a 2D array, and to gamma alpha d(-3) when in a 3D array. Likewise, an acceptor NW changes its distance dependence from gamma alpha d(-5) to gamma alpha d(-4) when they are arranged in a 1D array and to gamma alpha d(-3) when in a 2D array. These finding shows that the numbers of dimensions across which nanostructures are stacked is equally critical as the confinement dimension of the nanostructure in determining the NRET kinetics.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:03:16Z (GMT). No. of bitstreams: 1 HV11.pdf: 3596396 bytes, checksum: f2283e3423fef1b8ed3b6769ca7ce8a4 (MD5)en
dc.identifier.doi10.1021/jp409833ben_US
dc.identifier.eissn1932-7455
dc.identifier.issn1932-7447
dc.identifier.urihttp://hdl.handle.net/11693/12820
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/jp409833ben_US
dc.source.titleJournal of Physical Chemistry Cen_US
dc.subjectSemiconductor Nanowiresen_US
dc.subjectCdte Nanowiresen_US
dc.subjectNanoparticlesen_US
dc.subjectWavelengthen_US
dc.subjectMoleculesen_US
dc.subjectPhotonicsen_US
dc.subjectElectronen_US
dc.subjectDnaen_US
dc.titleFörster-type nonradiative energy transfer for assemblies of arrayed nanostructures: confinement dimension vs stacking dimensionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Förster-type_nonradiative_energy_transfer_for_assemblies_of_arrayed_nanostructures:_confinement_dimension_vs_stacking_dimension.pdf
Size:
3.43 MB
Format:
Adobe Portable Document Format
Description:
Full printable version