Mesoporous MnCo2O4 NiCo2O4 and ZnCo2O4 thin-film electrodes as electrocatalysts for the oxygen evolution reaction in alkaline solutions
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The oxygen evolution reaction (OER) is the bottleneck of the electrochemical water-splitting process, where the use of porous metal oxide electrodes is beneficial. In this work, we introduce a one-pot synthesis method to fabricate a series of mesoporous metal cobaltite (m-MCo2O4, M = Mn, Ni, and Zn) electrodes for the OER. The method involves preparation and coating of a homogeneous clear solution of all ingredients (metal salts and surfactants) over a fluorine-doped tin oxide surface as a thin lyotropic liquid crystalline film and calcination (as low as 250 °C) to obtain a 400 nm thick crystalline m-MCo2O4 electrode with a spinel structure. Mesophases and m-MCo2O4 films are characterized using structural and electrochemical techniques. All electrodes are stable during the electrochemical test in 1 M KOH aqueous solution and perform at as low as 204 mV overpotential at 1 mA/cm2 current density; the m-MnCo2O4 electrode works at current densities of 1, 10, and 100 mA/cm2 at 227, 300, and 383 mV overpotentials after compensating the IR drop, respectively. The Tafel slope is 60 mV/dec for the m-NiCo2O4 and m-ZnCo2O4 electrodes, but it gradually increases to 85 mV/dec in the m-MnCo2O4 electrode by thermal treatment, indicating a change in the OER mechanism.