Nanoscale charging hysteresis measurement by multifrequency electrostatic force spectroscopy, insulating substrates, silicon nanocrystals

dc.citation.epage093108-3en_US
dc.citation.issueNumber9en_US
dc.citation.spage093108-1en_US
dc.citation.volumeNumber92en_US
dc.contributor.authorBostanci, U.en_US
dc.contributor.authorAbak, M. K.en_US
dc.contributor.authorAktas, O.en_US
dc.contributor.authorDana, A.en_US
dc.date.accessioned2015-07-28T11:59:24Z
dc.date.available2015-07-28T11:59:24Z
dc.date.issued2008-03-04en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractWe report a scanning probe technique that can be used to measure charging of localized states on conducting or partially insulating substrates at room temperature under ambient conditions. Electrostatic interactions in the presence of a charged particle between the tip and the sample is monitored by the second order flexural mode, while the fundamental mode is used for stabilizing the tip-sample separation. Cycling the bias voltage between two limits, it is possible to observe hysteresis of the second order mode amplitude due to charging. Results are presented on silicon nitride films containing silicon nanocrystals.en_US
dc.identifier.doi10.1063/1.2888765en_US
dc.identifier.issn0003-6951
dc.identifier.urihttp://hdl.handle.net/11693/11945
dc.instituteInstitute of Materials Science and Nanotechnologyen_US
dc.language.isoEnglishen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.2888765en_US
dc.source.titleApplied Physics Lettersen_US
dc.subjectCharged particles, Coulomb interactions, hysteresis, nanocrystals, silicon nitride, spectroscopic analysisen_US
dc.titleNanoscale charging hysteresis measurement by multifrequency electrostatic force spectroscopy, insulating substrates, silicon nanocrystalsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanoscale_charging_hysteresis_measurement_by_multifrequency_electrostatic_force_spectroscopy_insulating_substrates_silicon_nanocrystals.pdf
Size:
326.29 KB
Format:
Adobe Portable Document Format
Description:
Full printable version