Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage10en_US
dc.citation.issueNumber1en_US
dc.citation.spage1en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorGhobadi, A.en_US
dc.contributor.authorDereshgi, S. A.en_US
dc.contributor.authorHajian, H.en_US
dc.contributor.authorBozok, B.en_US
dc.contributor.authorButun, B.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2018-04-12T11:07:51Z
dc.date.available2018-04-12T11:07:51Z
dc.date.issued2017en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractIn this paper, we propose a facile route to fabricate a metal insulator multilayer stack to obtain ultra-broadband, wide angle behavior from the structure. The absorber, which covers near infrared (NIR) and visible (Vis) ranges, consists of a metal-insulator-metal-insulator (MIMI) multilayer where the middle metal layer has a variant thickness. It is found that this non-uniform thickness of the metal provides us with an absorption that is much broader compared to planar architecture. In the non-uniform case, each thickness is responsible for a specific wavelength range where the overall absorption is the superposition of these resonant responses and consequently a broad, perfect light absorption is attained. We first numerically examine the impact of different geometries on the overall light absorption property of the multilayer design. Afterward, we fabricate the designs and characterize them to experimentally verify our numerical findings. Characterizations show a good agreement with numerical results where the optimum absorption bandwidth for planar design is found to be 620 nm (380 nm-1000 nm) and it is significantly boosted to an amount of 1060 nm (350 nm-1410 nm) for multi-thickness case. © 2017 The Author(s).en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:07:51Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1038/s41598-017-04964-3en_US
dc.identifier.eissn2045-2322en_US
dc.identifier.urihttp://hdl.handle.net/11693/37266
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttps://doi.org/10.1038/s41598-017-04964-3en_US
dc.source.titleScientific Reportsen_US
dc.subjectBehavioren_US
dc.subjectGeometryen_US
dc.subjectInfrared radiationen_US
dc.subjectLight absorptionen_US
dc.subjectThicknessen_US
dc.titleUltra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface textureen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture.pdf
Size:
4.39 MB
Format:
Adobe Portable Document Format
Description:
Full printable version