Synthetic genetic circuits for self-actuated cellular nanomaterial fabrication devices

buir.contributor.authorÖlmez, Tolga Tarkan
buir.contributor.authorŞahin-Kehribar, Ebru
buir.contributor.authorIşılak, Musa Efe
buir.contributor.authorŞeker, Urartu Özgür Şafak
dc.citation.epage2162en_US
dc.citation.issueNumber9en_US
dc.citation.spage2152en_US
dc.citation.volumeNumber8en_US
dc.contributor.authorÖlmez, Tolga Tarkanen_US
dc.contributor.authorŞahin-Kehribar, Ebruen_US
dc.contributor.authorIşılak, Musa Efeen_US
dc.contributor.authorLu, T. K.en_US
dc.contributor.authorŞeker, Urartu Özgür Şafaken_US
dc.date.accessioned2020-02-12T11:09:41Z
dc.date.available2020-02-12T11:09:41Z
dc.date.issued2019
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractGenetically controlled synthetic biosystems are being developed to create nanoscale materials. These biosystems are modeled on the natural ability of living cells to synthesize materials: many organisms have dedicated proteins that synthesize a wide range of hard tissues and solid materials, such as nanomagnets and biosilica. We designed an autonomous living material synthesizing system consisting of engineered cells with genetic circuits that synthesize nanomaterials. The circuits encode a nanomaterial precursor-sensing module (sensor) coupled with a materials synthesis module. The sensor detects the presence of cadmium, gold, or iron ions, and this detection triggers the synthesis of the related nanomaterial-nucleating extracellular matrix. We demonstrate that when engineered cells sense the availability of a precursor ion, they express the corresponding extracellular matrix to form the nanomaterials. This proof-of-concept study shows that endowing cells with synthetic genetic circuits enables nanomaterial synthesis and has the potential to be extended to the synthesis of a variety of nanomaterials and biomaterials using a green approach.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-02-12T11:09:41Z No. of bitstreams: 1 Synthetic_genetic_circuits_for_self_actuated_cellular_nanomaterial_fabrication_devices.pdf: 5293533 bytes, checksum: 3413dc10e57afa4f971d973c7ef840d2 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-12T11:09:41Z (GMT). No. of bitstreams: 1 Synthetic_genetic_circuits_for_self_actuated_cellular_nanomaterial_fabrication_devices.pdf: 5293533 bytes, checksum: 3413dc10e57afa4f971d973c7ef840d2 (MD5) Previous issue date: 2019en
dc.identifier.doi10.1021/acssynbio.9b00235en_US
dc.identifier.issn2161-5063
dc.identifier.urihttp://hdl.handle.net/11693/53303
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1021/acssynbio.9b00235en_US
dc.source.titleACS Synthetic Biologyen_US
dc.subjectBiofilmsen_US
dc.subjectGenetic circuitsen_US
dc.subjectNanomaterialsen_US
dc.subjectSynthetic biologyen_US
dc.subjectWhole-cell biosensorsen_US
dc.titleSynthetic genetic circuits for self-actuated cellular nanomaterial fabrication devicesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Synthetic_genetic_circuits_for_self_actuated_cellular_nanomaterial_fabrication_devices.pdf
Size:
5.05 MB
Format:
Adobe Portable Document Format
Description:
View / Download
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: