Rational design and synthesis of bodipy dyes for molecular sensing, light harvesting and photodynamic applications

Available
The embargo period has ended, and this item is now available.

Date

2014

Editor(s)

Advisor

Akkaya, Engin U.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
10
downloads

Series

Abstract

BODIPY dyes have been addressed in many applications due to highly important features. These unique properties can be summarized as high photostability, high extinction coefficient, easy functionality, etc. Thus, tremendous studies have been published and, ion sensing, photodynamic therapy, dye-sensitized solar cells and light harvesting are some of the areas that BODIPY dyes have been utilized. In this thesis, BODIPY dyes were functionalized to be used for different concepts. In the first study, the main purpose was to seek for ion signaling differences of two isomeric tetra-styryl BODIPY dyes with charge donor ligand located at 1,7 versus 3,5 positions. Second work focuses on the light harvesting concept with the use of tetra-styryl BODIPY derivatives. Third study describes the coupling of energy transfer with internal charge transfer to monitor the alterations in intensity ratios, so, dynamic range of the fluorescent probe is improved. Design and synthesis of BODIPY dyes for detection of biological thiols in aqueous solution both chromogenically and fluorogenically was given in fourth study. Another biologically important molecule, hydrogen sulfide is selectively detected via BODIPY-based probe and depicted in the fifth study. In the sixth work, persistent luminescent nanoparticles are attached to BODIPY-based photosensitizer to activate the photodynamic action.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Materials Science and Nanotechnology

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)

Language

English

Type