Covering a rectangular chessboard with staircase walks

dc.citation.epage2233en_US
dc.citation.issueNumber12en_US
dc.citation.spage2229en_US
dc.citation.volumeNumber338en_US
dc.contributor.authorKerimov, A.en_US
dc.date.accessioned2016-02-08T09:49:42Z
dc.date.available2016-02-08T09:49:42Z
dc.date.issued2015en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet C(n, m) be a n×m chessboard. An ascending (respectively descending) staircase walk on C(n, m) is a rook’s path on C(n, m) that in every step goes either right or up (respectively right or down). We determine the minimal number of ascending and descending staircase walks covering C(n, m).en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:49:42Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1016/j.disc.2015.05.027en_US
dc.identifier.eissn1872-681X
dc.identifier.issn0012-365X
dc.identifier.urihttp://hdl.handle.net/11693/21680
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.disc.2015.05.027en_US
dc.source.titleDiscrete Mathematicsen_US
dc.subjectCoveren_US
dc.subjectRook's pathen_US
dc.subjectStaircase walken_US
dc.titleCovering a rectangular chessboard with staircase walksen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Covering a rectangular chessboard with staircase walks.pdf
Size:
361.13 KB
Format:
Adobe Portable Document Format
Description:
Full printable version