Covering a rectangular chessboard with staircase walks
dc.citation.epage | 2233 | en_US |
dc.citation.issueNumber | 12 | en_US |
dc.citation.spage | 2229 | en_US |
dc.citation.volumeNumber | 338 | en_US |
dc.contributor.author | Kerimov, A. | en_US |
dc.date.accessioned | 2016-02-08T09:49:42Z | |
dc.date.available | 2016-02-08T09:49:42Z | |
dc.date.issued | 2015 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let C(n, m) be a n×m chessboard. An ascending (respectively descending) staircase walk on C(n, m) is a rook’s path on C(n, m) that in every step goes either right or up (respectively right or down). We determine the minimal number of ascending and descending staircase walks covering C(n, m). | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:49:42Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015 | en |
dc.identifier.doi | 10.1016/j.disc.2015.05.027 | en_US |
dc.identifier.eissn | 1872-681X | |
dc.identifier.issn | 0012-365X | |
dc.identifier.uri | http://hdl.handle.net/11693/21680 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.disc.2015.05.027 | en_US |
dc.source.title | Discrete Mathematics | en_US |
dc.subject | Cover | en_US |
dc.subject | Rook's path | en_US |
dc.subject | Staircase walk | en_US |
dc.title | Covering a rectangular chessboard with staircase walks | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Covering a rectangular chessboard with staircase walks.pdf
- Size:
- 361.13 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version