Covering a rectangular chessboard with staircase walks
Date
2015
Authors
Kerimov, A.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Discrete Mathematics
Print ISSN
0012-365X
Electronic ISSN
1872-681X
Publisher
Elsevier
Volume
338
Issue
12
Pages
2229 - 2233
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
0
views
views
11
downloads
downloads
Series
Abstract
Let C(n, m) be a n×m chessboard. An ascending (respectively descending) staircase walk on C(n, m) is a rook’s path on C(n, m) that in every step goes either right or up (respectively right or down). We determine the minimal number of ascending and descending staircase walks covering C(n, m).