Nanocrystal skins with exciton funneling for photosensing

Date

2014-03-05

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Small

Print ISSN

1613-6810

Electronic ISSN

1613-6829

Publisher

Wiley-VCH Verlag

Volume

10

Issue

12

Pages

2470 - 2475

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Highly photosensitive nanocrystal (NC) skins based on exciton funneling are proposed and demonstrated using a graded bandgap profile across which no external bias is applied in operation for light-sensing. Four types of gradient NC skin devices (GNS) made of NC monolayers of distinct sizes with photovoltage readout are fabricated and comparatively studied. In all structures, polyelectrolyte polymers separating CdTe NC monolayers set the interparticle distances between the monolayers of ligand-free NCs to <1 nm. In this photosensitive GNS platform, excitons funnel along the gradually decreasing bandgap gradient of cascaded NC monolayers, and are finally captured by the NC monolayer with the smallest bandgap interfacing the metal electrode. Time-resolved measurements of the cascaded NC skins are conducted at the donor and acceptor wavelengths, and the exciton transfer process is confirmed in these active structures. These findings are expected to enable large-area GNS-based photosensing with highly efficient full-spectrum conversion.

Course

Other identifiers

Book Title

Citation