Nanocrystal skins with exciton funneling for photosensing

Date
2014-03-05
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Small
Print ISSN
1613-6810
Electronic ISSN
1613-6829
Publisher
Wiley-VCH Verlag
Volume
10
Issue
12
Pages
2470 - 2475
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Highly photosensitive nanocrystal (NC) skins based on exciton funneling are proposed and demonstrated using a graded bandgap profile across which no external bias is applied in operation for light-sensing. Four types of gradient NC skin devices (GNS) made of NC monolayers of distinct sizes with photovoltage readout are fabricated and comparatively studied. In all structures, polyelectrolyte polymers separating CdTe NC monolayers set the interparticle distances between the monolayers of ligand-free NCs to <1 nm. In this photosensitive GNS platform, excitons funnel along the gradually decreasing bandgap gradient of cascaded NC monolayers, and are finally captured by the NC monolayer with the smallest bandgap interfacing the metal electrode. Time-resolved measurements of the cascaded NC skins are conducted at the donor and acceptor wavelengths, and the exciton transfer process is confirmed in these active structures. These findings are expected to enable large-area GNS-based photosensing with highly efficient full-spectrum conversion.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)