Porphyrin cross-linked conjugated polymer nanoparticles-based photosensitizer for antimicrobial and anticancer photodynamic therapies
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We report here the synthesis and characterization of a water dispersible conjugated polymer nanoparticle-based photosensitizer and its application in the antibacterial and anticancer phototherapies. Nanoparticles (CPPN) were synthesized in one-pot by nanoprecipitation method, in which a hydrophobic azide functionalized, red-emitting thiophene-benzothiodiazole based conjugated polymer (CP-AZ) was cross-linked with a hydrophilic, propargylamine functionalized porphyrin (TPP-4AL) through cucurbit[6]uril (CB6) catalyzed azide-alkyne cycloaddition (CB6-AAC) reaction. CPPN demonstrated high stability in aqueous medium for more than a month without any visible aggregation and appeared to be a good photosensitizer with high light-triggered reactive oxygen species (ROS) generation ability. Consequently, CPPN displayed photo-induced biocidal activity against Gram-negative (Escherichia coli, E. coli) and Gram-positive (Bacillus subtilis, B. subtilis and Staphylococcus aureus, S. aureus) bacteria. When bacteria suspension was incubated with CPPN (20 μg ml−1) and irradiated with white light (22 mW cm−2) for 10 min, more than 3.5-log reduction in colony-forming units (CFUs) was recorded for the three model bacteria. CPPN demonstrated minimal dark cytotoxicity against the bacteria. Moreover, the cytotoxicity of CPPN on mammalian cell was studied using MCF-7 breast cancer cell line. The results demonstrated that CPPN is non-toxic to mammalian cells in the dark even at a high concentration of 112.5 μg ml−1 and this feature makes CPPN an ideal photosensitizer.