Enhanced reduction of graphene oxide by means of charging and electric fields applied to hydroxyl groups

buir.contributor.authorÇıracı, Salim
buir.contributor.orcidÇıracı, Salim|0000-0001-8023-9860
dc.citation.issueNumber43en_US
dc.citation.volumeNumber25en_US
dc.contributor.authorGürel, H. H.en_US
dc.contributor.authorÇıracı, Salimen_US
dc.date.accessioned2016-02-08T09:34:19Z
dc.date.available2016-02-08T09:34:19Z
dc.date.issued2013en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractWe present a first-principles study of the effects of charging and perpendicular electric fields on hydroxyl groups, both of which mediate the reduction of graphene oxide through the formation of H2O and H 2O2. Starting with an investigation of the interaction between the hydroxyl groups and graphene, we determine the equilibrium binding geometry, binding energy, and the diffusion path with a minimum energy barrier and show that those equilibrium properties are strongly affected by external agents. While co-adsorbed H and O form bound OH, co-adsorbed H and OH in close proximity form H2O with almost no energy barrier. When negatively charged or subjected to a perpendicular electric field, the energy barrier between two OH co-adsorbed in close proximity is weakened or totally suppressed, forming an oxygen atom strongly bound at the bridge site, together with a water molecule. The water molecule by itself is very weakly bound to graphene and is prone to desorb from the surface, leading to the reduction of graphene oxide. It is therefore demonstrated that the reduction of graphene oxide is promoted to a large extent by negative charging or an applied perpendicular electric field, through the formation of weakly bound water molecules from hydroxyl groups. © 2013 IOP Publishing Ltd.en_US
dc.identifier.doi10.1088/0953-8984/25/43/435304en_US
dc.identifier.issn1361-648X
dc.identifier.urihttp://hdl.handle.net/11693/20743
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0953-8984/25/43/435304en_US
dc.source.titleJournal of Physics Condensed Matteren_US
dc.titleEnhanced reduction of graphene oxide by means of charging and electric fields applied to hydroxyl groupsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Enhanced reduction of graphene oxide by means of charging and electric fields applied to hydroxyl groups.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version