Computational homogenization of fatigue in additively manufactured microlattice structures

buir.contributor.authorMozafari, Farzin
buir.contributor.authorTemizer, İlker
buir.contributor.orcidTemizer, İlker|0000-0003-3043-7521
dc.citation.epage384en_US
dc.citation.issueNumber2en_US
dc.citation.spage367en_US
dc.citation.volumeNumber71en_US
dc.contributor.authorMozafari, Farzin
dc.contributor.authorTemizer, İlker
dc.date.accessioned2023-02-17T10:13:55Z
dc.date.available2023-02-17T10:13:55Z
dc.date.issued2023-02
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractA novel computational approach to predicting fatigue crack initiation life in additively manufactured microlattice structures is proposed based on a recently developed microplasticity-based constitutive theory. The key idea is to use the concept of (micro)plastic dissipation as the driving factor to model fatigue degradation in additively manufactured metallic microlattice. An ad-hoc curve-fitting procedure is proposed to calibrate the introduced material constitutive parameters efficiently. The well-calibrated model is employed to obtain fatigue life predictions for microlattices through a diverse set of RVE-based finite element fatigue simulations. The model’s predictive capabilities are verified by comparing the simulation results with experimental fatigue data reported in the literature. The overall approach constitutes a unified setting for fatigue life prediction of additively manufactured microlattice structures ranging from low- to high-cycle regimes. It is also shown that the model can be applied to technologically relevant microlattices with mathematically-created complex microstructure topologies.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2023-02-17T10:13:55Z No. of bitstreams: 1 Computational_homogenization_of_fatigue_in_additively_manufactured_microlattice_structures.pdf: 2132603 bytes, checksum: 5a5c6ac6b31631a3c77b734228dd5121 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-17T10:13:55Z (GMT). No. of bitstreams: 1 Computational_homogenization_of_fatigue_in_additively_manufactured_microlattice_structures.pdf: 2132603 bytes, checksum: 5a5c6ac6b31631a3c77b734228dd5121 (MD5) Previous issue date: 2023-02en
dc.identifier.doi10.1007/s00466-022-02243-1en_US
dc.identifier.issn0178-7675
dc.identifier.urihttp://hdl.handle.net/11693/111494
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://doi.org/10.1007/s00466-022-02243-1en_US
dc.source.titleComputational Mechanicsen_US
dc.subjectAdditive manufacturingen_US
dc.subjectFatigueen_US
dc.subjectMicrolatticeen_US
dc.subjectMicromechanicsen_US
dc.subjectMicroplasticityen_US
dc.titleComputational homogenization of fatigue in additively manufactured microlattice structuresen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Computational_homogenization_of_fatigue_in_additively_manufactured_microlattice_structures.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: