A porosity difference based selective dissolution strategy to prepare shape-tailored hollow mesoporous silica nanoparticles
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This article reports a general method to prepare hollow mesoporous silica nanoparticles with tailored morphology. The method is based on selective dissolution of porous cores of solid silica shell/porous silica core nanoparticles under mild conditions without the need for corrosive or toxic etchants. First, core-shell nanospheres or nanorods are prepared in a one-pot reaction. Then, mesoporous cores of the nanoparticles are selectively dissolved by incubating them in phosphate buffered saline (PBS) at 65 °C for one day. Surprisingly, shells of the resulting hollow particles contain both small and large mesopores which makes the particles very suitable for adsorption and desorption of a wide range of molecules. In addition, we proposed a mechanism for selective dissolution of porous cores of the core-shell nanoparticles.