On the monodromy groups of real Enriques surfaces
buir.advisor | Degtyarev, Alexander | |
dc.contributor.author | Erdoğan, Sultan | |
dc.date.accessioned | 2016-07-01T10:58:29Z | |
dc.date.available | 2016-07-01T10:58:29Z | |
dc.date.issued | 2003 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description.abstract | In this thesis we start the study of the fundamental group of the moduli space of real Enriques surfaces. The principal result is the assertion that, with one exception, any permutation of components of the half E (2) R of a real Enriques surface with a distinguished half E (1) R = Vd+2, d ≥ 1 can be realized by deformations and automorphisms. In the exceptional case ER = {V3} t {V1 t 4S} only a subgroup Z2 × Z2 ⊂ S4 can be realized. | en_US |
dc.description.provenance | Made available in DSpace on 2016-07-01T10:58:29Z (GMT). No. of bitstreams: 1 0002364.pdf: 239580 bytes, checksum: 1ed28315259b6ff5aa4419e9c0d7bb61 (MD5) Previous issue date: 2003 | en |
dc.description.statementofresponsibility | Erdoğan, Sultan | en_US |
dc.format.extent | viii, 29 leaves, 30 cm | en_US |
dc.identifier.itemid | BILKUTUPB072050 | |
dc.identifier.uri | http://hdl.handle.net/11693/29361 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Enriques surface | en_US |
dc.subject | deformation | en_US |
dc.subject | involution on manifold | en_US |
dc.subject | real algebraic surface | en_US |
dc.subject.lcc | QA573 .E73 2003 | en_US |
dc.subject.lcsh | Enriques surfaces. | en_US |
dc.title | On the monodromy groups of real Enriques surfaces | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 0002364.pdf
- Size:
- 233.96 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version