On the monodromy groups of real Enriques surfaces
Date
2003
Authors
Editor(s)
Advisor
Degtyarev, Alexander
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
2
views
views
4
downloads
downloads
Series
Abstract
In this thesis we start the study of the fundamental group of the moduli space of real Enriques surfaces. The principal result is the assertion that, with one exception, any permutation of components of the half E (2) R of a real Enriques surface with a distinguished half E (1) R = Vd+2, d ≥ 1 can be realized by deformations and automorphisms. In the exceptional case ER = {V3} t {V1 t 4S} only a subgroup Z2 × Z2 ⊂ S4 can be realized.
Source Title
Publisher
Course
Other identifiers
Book Title
Degree Discipline
Mathematics
Degree Level
Master's
Degree Name
MS (Master of Science)
Citation
Permalink
Published Version (Please cite this version)
Collections
Language
English