On the monodromy groups of real Enriques surfaces

Date

2003

Editor(s)

Advisor

Degtyarev, Alexander

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
4
downloads

Series

Abstract

In this thesis we start the study of the fundamental group of the moduli space of real Enriques surfaces. The principal result is the assertion that, with one exception, any permutation of components of the half E (2) R of a real Enriques surface with a distinguished half E (1) R = Vd+2, d ≥ 1 can be realized by deformations and automorphisms. In the exceptional case ER = {V3} t {V1 t 4S} only a subgroup Z2 × Z2 ⊂ S4 can be realized.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type