Laser nanofabrication inside silicon with spatial beam modulation and anisotropic seeding

buir.contributor.authorSabet, Rana Asgari
buir.contributor.authorIshraq, Aqiq
buir.contributor.authorSaltık, Alperen
buir.contributor.authorBütün, Mehmet
buir.contributor.authorTokel, Onur
buir.contributor.orcidSabet, Rana Asgari|0000-0001-9926-0221
buir.contributor.orcidIshraq, Aqiq|0000-0001-5905-7931
buir.contributor.orcidSaltık, Alperen|0009-0008-5654-3713
buir.contributor.orcidBütün, Mehmet|0000-0002-2058-2971
buir.contributor.orcidTokel, Onur|0000-0003-1586-4349
dc.citation.epage5786-10
dc.citation.issueNumber1
dc.citation.spage5786-1
dc.citation.volumeNumber15
dc.contributor.authorSabet, Rana Asgari
dc.contributor.authorIshraq, Aqiq
dc.contributor.authorSaltık, Alperen
dc.contributor.authorBütün, Mehmet
dc.contributor.authorTokel, Onur
dc.date.accessioned2025-02-22T15:20:20Z
dc.date.available2025-02-22T15:20:20Z
dc.date.issued2024-07-16
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)
dc.departmentNanotechnology Research Center (NANOTAM)
dc.departmentDepartment of Physics
dc.description.abstractNanofabrication in silicon, arguably the most important material for modern technology, has been limited exclusively to its surface. Existing lithography methods cannot penetrate the wafer surface without altering it, whereas emerging laser-based subsurface or in-chip fabrication remains at greater than 1 mu m resolution. In addition, available methods do not allow positioning or modulation with sub-micron precision deep inside the wafer. The fundamental difficulty of breaking these dimensional barriers is two-fold, i.e., complex nonlinear effects inside the wafer and the inherent diffraction limit for laser light. Here, we overcome these challenges by exploiting spatially-modulated laser beams and anisotropic feedback from preformed subsurface structures, to establish controlled nanofabrication capability inside silicon. We demonstrate buried nanostructures of feature sizes down to 100 +/- 20 nm, with subwavelength and multi-dimensional control; thereby improving the state-of-the-art by an order-of-magnitude. In order to showcase the emerging capabilities, we fabricate nanophotonics elements deep inside Si, exemplified by nanogratings with record diffraction efficiency and spectral control. The reported advance is an important step towards 3D nanophotonics systems, micro/nanofluidics, and 3D electronic-photonic integrated systems. The authors report controlled laser nanofabrication inside silicon. The dimensional barrier is overcome by spatially modulated lasers and anisotropic feedback from preformed structures. Features down to 100 nm is achieved, improving the state-of-the-art by an order-of-magnitude.
dc.description.provenanceSubmitted by Muhammed Murat Uçar (murat.ucar@bilkent.edu.tr) on 2025-02-22T15:20:20Z No. of bitstreams: 1 Laser_nanofabrication_inside_silicon_with_spatial_beam_modulation_and_anisotropic_seeding.pdf: 4189909 bytes, checksum: 14ceb64838c05bc9372a887685342696 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-22T15:20:20Z (GMT). No. of bitstreams: 1 Laser_nanofabrication_inside_silicon_with_spatial_beam_modulation_and_anisotropic_seeding.pdf: 4189909 bytes, checksum: 14ceb64838c05bc9372a887685342696 (MD5) Previous issue date: 2024-07-16en
dc.identifier.doi10.1038/s41467-024-49303-z
dc.identifier.eissn2041-1723
dc.identifier.urihttps://hdl.handle.net/11693/116648
dc.language.isoEnglish
dc.publisherNATURE PORTFOLIO
dc.relation.isversionofhttps://dx.doi.org/10.1038/s41467-024-49303-z
dc.rightsCC BY 4.0 Deed (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleNature Communications
dc.titleLaser nanofabrication inside silicon with spatial beam modulation and anisotropic seeding
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Laser_nanofabrication_inside_silicon_with_spatial_beam_modulation_and_anisotropic_seeding.pdf
Size:
4 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: