Mechanical and optical optimization of a fiber-optic interferometric acoustic sensor
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
External cavity Fiber optic interferometric microphones have the potential to operate at the acustic impedance derived noise limit, with a noise oor close to 1uPa=pHz. This can be achieved with careful optimization of both the mechanical and optical properties of such a sensor. We describe models for the acoustic-to-displacement and displacement-to-optical signal transduction in a Fabry-Perot (FP) type interferometric microphone. We present experimental results and nite element calculations to validate the models. Based on the models, requirements to achieve ultimate sensitivity and noise level in a FP microphone are discussed. Demonstration of a microphone with 30 dBA noise foor is presented using partially optimized membrane and interferometer.