Quaternionic Hilbert spaces and a von Neumann inequality

dc.citation.epage675en_US
dc.citation.issueNumber6en_US
dc.citation.spage667en_US
dc.citation.volumeNumber57en_US
dc.contributor.authorAlpay, D.en_US
dc.contributor.authorKaptanoğlu, H. T.en_US
dc.date.accessioned2016-02-08T09:46:39Z
dc.date.available2016-02-08T09:46:39Z
dc.date.issued2012en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe show that Drury's proof of the generalisation of the von Neumann inequality to the case of contractive rows of N-tuples of commuting operators still holds in the quaternionic case. The arguments require a seemingly new result on tensor products of quaternionic Hilbert spaces. © 2012 Copyright Taylor and Francis Group, LLC.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:46:39Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012en
dc.identifier.doi10.1080/17476933.2010.534141en_US
dc.identifier.eissn1747-6941
dc.identifier.issn1747-6933
dc.identifier.urihttp://hdl.handle.net/11693/21461
dc.language.isoEnglishen_US
dc.publisherTaylor & Francisen_US
dc.relation.isversionofhttp://dx.doi.org/10.1080/17476933.2010.534141en_US
dc.source.titleComplex Variables and Elliptic Equationsen_US
dc.subjectDrury-Arveson spaceen_US
dc.subjectQuaternionic Hilbert spacesen_US
dc.subjectReproducing kernel Hilbert spacesen_US
dc.subjectTensor productsen_US
dc.subjectVon Neumann inequalityen_US
dc.subjectPrimary 47A60en_US
dc.subjectSecondary 46A32en_US
dc.subject47B32en_US
dc.subject47S10en_US
dc.titleQuaternionic Hilbert spaces and a von Neumann inequalityen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quaternionic Hilbert spaces and a von Neumann inequality.pdf
Size:
303.3 KB
Format:
Adobe Portable Document Format
Description:
Full printable version