Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study

Date

2010

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review B - Condensed Matter and Materials Physics

Print ISSN

1098-0121

Electronic ISSN

Publisher

American Physical Society

Volume

81

Issue

2

Pages

024107-1 - 024107-6

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

This study of elastic and plastic deformation of graphene, silicene, and boron nitride BN honeycomb nanoribbons under uniaxial tension determines their elastic constants and reveals interesting features. In the course of stretching in the elastic range, the electronic and magnetic properties can be strongly modified. In particular, it is shown that the band gap of a specific armchair nanoribbon is closed under strain and highest valance and lowest conduction bands are linearized. This way, the massless Dirac fermion behavior can be attained even in a semiconducting nanoribbon. Under plastic deformation, the honeycomb structure changes irreversibly and offers a number of new structures and functionalities. Cagelike structures, even suspended atomic chains can be derived between two honeycomb flakes. Present work elaborates on the recent experiments C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 2009 deriving carbon chains from graphene. Furthermore, the similar formations of atomic chains from BN and Si nanoribbons are predicted.

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)