Weakly confined organic-inorganic halide perovskite quantum dots as high-purity room-temperature single photon sources

Available
The embargo period has ended, and this item is now available.

Date

2024-04-10

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
9
downloads

Citation Stats

Attention Stats

Series

Abstract

Colloidal perovskite quantum dots (PQDs) have emerged as highly promising single photon emitters for quantum information applications. Presently, most strategies have focused on leveraging quantum confinement to increase the nonradiative Auger recombination (AR) rate to enhance single-photon (SP) purity in all-inorganic CsPbBr3 QDs. However, this also increases the fluorescence intermittency. Achieving high SP purity and blinking mitigation simultaneously remains a significant challenge. Here, we transcend this limitation with room-temperature synthesized weakly confined hybrid organic-inorganic perovskite (HOIP) QDs. Superior single photon purity with a low g((2))(0) < 0.07 +/- 0.03 and a nearly blinking-free behavior (ON-state fraction >95%) in 11 nm FAPbBr(3) QDs are achieved at room temperature, attributed to their long exciton lifetimes (tau(X)) and short biexciton lifetimes (tau(XX)). The significance of the organic A-cation is further validated using the mixed-cation FA(x)Cs(1-x)PbBr(3). Theoretical calculations utilizing a combination of the Bethe-Salpeter (BSE) and kp approaches point toward the modulation of the dielectric constants by the organic cations. Importantly, our findings provide valuable insights into an additional lever for engineering facile-synthesized room-temperature PQD single photon sources.

Source Title

ACS Nano

Publisher

American Chemical Society

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English