High-throughput, high-resolution interferometric light microscopy of biological nanoparticles

buir.contributor.authorÖzbay, Ekmel
buir.contributor.authorÜnlü, M. Selim
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage2013en_US
dc.citation.issueNumber22en_US
dc.citation.spage2002en_US
dc.citation.volumeNumber14en_US
dc.contributor.authorYurdakul, C.
dc.contributor.authorAvcı, O.
dc.contributor.authorMatlock, A.
dc.contributor.authorDevaux, A. J.
dc.contributor.authorQuintero, M. V.
dc.contributor.authorÖzbay, Ekmel
dc.contributor.authorDavey, R. A.
dc.contributor.authorConnor, J. H.
dc.contributor.authorKarl, W. C.
dc.contributor.authorTian, L.
dc.contributor.authorÜnlü, M. Selim
dc.date.accessioned2021-02-12T11:56:32Z
dc.date.available2021-02-12T11:56:32Z
dc.date.issued2020-01
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractLabel-free, visible light microscopy is an indispensable tool for studying biological nanoparticles (BNPs). However, conventional imaging techniques have two major challenges: (i) weak contrast due to low-refractive-index difference with the surrounding medium and exceptionally small size and (ii) limited spatial resolution. Advances in interferometric microscopy have overcome the weak contrast limitation and enabled direct detection of BNPs, yet lateral resolution remains as a challenge in studying BNP morphology. Here, we introduce a wide-field interferometric microscopy technique augmented by computational imaging to demonstrate a 2-fold lateral resolution improvement over a large field-of-view (>100 × 100 μm2 ), enabling simultaneous imaging of more than 104 BNPs at a resolution of ∼150 nm without any labels or sample preparation. We present a rigorous vectorial-optics-based forward model establishing the relationship between the intensity images captured under partially coherent asymmetric illumination and the complex permittivity distribution of nanoparticles. We demonstrate high-throughput morphological visualization of a diverse population of Ebola virus-like particles and a structurally distinct Ebola vaccine candidate. Our approach offers a low-cost and robust label-free imaging platform for high-throughput and high-resolution characterization of a broad size range of BNPs.en_US
dc.identifier.doi10.1021/acsnano.9b08512en_US
dc.identifier.issn1936-0851
dc.identifier.urihttp://hdl.handle.net/11693/55118
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1021/acsnano.9b08512en_US
dc.source.titleACS Nanoen_US
dc.subjectInterference microscopyen_US
dc.subjectNanoparticle detectionen_US
dc.subjectBiosensingen_US
dc.subjectComputational imagingen_US
dc.subjectLabel-freeen_US
dc.subjectFourier opticsen_US
dc.titleHigh-throughput, high-resolution interferometric light microscopy of biological nanoparticlesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
High-throughput_high-resolution_interferometric_light_microscopy_of_biological_nanoparticles.pdf
Size:
5.09 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: