Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control the defect density

Date
2014-06-09
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Nanoscale
Print ISSN
2040-3364
Electronic ISSN
Publisher
Royal Society of Chemistry
Volume
6
Issue
17
Pages
10224 - 10234
Language
English
Type
Article
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Oxygen vacancies (VOs) in ZnO are well-known to enhance photocatalytic activity (PCA) despite various other intrinsic crystal defects. In this study, we aim to elucidate the effect of zinc interstitials (Zn i) and VOs on PCA, which has applied as well as fundamental interest. To achieve this, the major hurdle of fabricating ZnO with controlled defect density requires to be overcome, where it is acknowledged that defect level control in ZnO is significantly difficult. In the present context, we fabricated nanostructures and thoroughly characterized their morphological (SEM, TEM), structural (XRD, TEM), chemical (XPS) and optical (photoluminescence, PL) properties. To fabricate the nanostructures, we adopted atomic layer deposition (ALD), which is a powerful bottom-up approach. However, to control defects, we chose polysulfone electrospun nanofibers as a substrate on which the non-uniform adsorption of ALD precursors is inevitable because of the differences in the hydrophilic nature of the functional groups. For the first 100 cycles, Znis were predominant in ZnO quantum dots (QDs), while the presence of VOs was negligible. As the ALD cycle number increased, VOs were introduced, whereas the density of Zni remained unchanged. We employed PL spectra to identify and quantify the density of each defect for all the samples. PCA was performed on all the samples, and the percent change in the decay constant for each sample was juxtaposed with the relative densities of Znis and VOs. A logical comparison of the relative defect densities of Znis and VOs suggested that the former are less efficient than the latter because of the differences in the intrinsic nature and the physical accessibility of the defects. Other reasons for the efficiency differences were elaborated.

Course
Other identifiers
Book Title
Keywords
Atomic layer deposition, Defects, Functional groups, Nanostructures, Oxygen vacancies, Photocatalysis, Zinc, Zinc oxide, Bottom up approach, Decay constants, Electrospun nanofibers, Intrinsic nature, Photocatalytic activities, Relative density, Zinc interstitials, ZnO quantum dots
Citation
Published Version (Please cite this version)