Stability limit of human-in-the-loop model reference adaptive control architectures

Series

Abstract

Model reference adaptive control (MRAC) offers mathematical and design tools to effectively cope with many challenges of real-world control problems such as exogenous disturbances, system uncertainties and degraded modes of operations. On the other hand, when faced with human-in-the-loop settings, these controllers can lead to unstable system trajectories in certain applications. To establish an understanding of stability limitations of MRAC architectures in the presence of humans, here a mathematical framework is developed whereby an MRAC is designed in conjunction with a class of linear human models including human reaction delays. This framework is then used to reveal, through stability analysis tools, the stability limit of the MRAC–human closed-loop system and the range of model parameters respecting this limit. An illustrative numerical example of an adaptive flight control application with a Neal–Smith pilot model is presented to demonstrate the effectiveness of developed approaches. © 2017 Informa UK Limited, trading as Taylor & Francis Group

Source Title

International Journal of Control

Publisher

Taylor and Francis

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English