pH tunable patterning of quantum dots

Date

2023-09-01

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Small

Print ISSN

1613-6810

Electronic ISSN

1613-6829

Publisher

Wiley-VCH Verlag GmbH & Co. KGaA

Volume

20

Issue

2

Pages

2305237-1 - 2305237-12

Language

en

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
21
views
5
downloads

Series

Abstract

Patterning of quantum dots (QDs) is essential for many, especially high-tech, applications. Here, pH tunable assembly of QDs over functional patterns prepared by electrohydrodynamic jet printing of poly(2-vinylpyridine) is presented. The selective adsorption of QDs from water dispersions is mediated by the electrostatic interaction between the ligand composed of 3-mercaptopropionic acid and patterned poly(2-vinylpyridine). The pH of the dispersion provides tunability at two levels. First, the adsorption density of QDs and fluorescence from the patterns can be modulated for pH > approximate to 4. Second, patterned features show unique type of disintegration resulting in randomly positioned features within areas defined by the printing for pH <= approximate to 4. The first capability is useful for deterministic patterning of QDs, whereas the second one enables hierarchically structured encoding of information by generating stochastic features of QDs within areas defined by the printing. This second capability is exploited for generating addressable security labels based on unclonable features. Through image analysis and feature matching algorithms, it is demonstrated that such patterns are unclonable in nature and provide a suitable platform for anti-counterfeiting applications. Collectively, the presented approach not only enables effective patterning of QDs, but also establishes key guidelines for addressable assembly of colloidal nanomaterials.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)