Gait and locomotion analysis of a soft-hybrid multilegged modular miniature robot

buir.contributor.authorMahkam, Nima
buir.contributor.authorÖzcan, Onur
buir.contributor.orcidMahkam, Nima|0000-0001-5450-4624
buir.contributor.orcidÖzcan, Onur|0000-0002-3190-6433
dc.citation.epage18en_US
dc.citation.issueNumber6en_US
dc.citation.spage1en_US
dc.citation.volumeNumber16en_US
dc.contributor.authorMahkam, Nima
dc.contributor.authorÖzcan, Onur
dc.date.accessioned2022-02-10T10:06:01Z
dc.date.available2022-02-10T10:06:01Z
dc.date.issued2021-09-28
dc.departmentDepartment of Mechanical Engineeringen_US
dc.description.abstractThe locomotion performance of the current legged miniature robots remains inferior compared to even the most simple insects. The inferiority has led researchers to utilize biological principles and control in their designs, often resulting in improved performance and robot capabilities. Additionally, optimizing the locomotion patterns compatible with the robot's limitations (such as the gaits achievable by the robot) improves the performance significantly and results in a robot operating with its maximum capabilities. This paper studies the locomotion characteristics of running/walking n-legged modular miniature robots with soft or rigid module connections. The locomotion study is done using the presented dynamic model, and the results are verified using a legged modular miniature robot with soft and rigid backbones (SMoLBot). The optimum foot contact sequences for an n-legged robot with different compliance values between the modules are derived using the locomotion analyses and the dynamic and kinematic formulations. Our investigations determine unique optimum foot contact sequences for multi-legged robots with different body compliances and module numbers. Locomotion analyses of a multi-legged robot with different backbones operating with optimum gaits show two main motion characteristics; the rigid robots minimize the number of leg-ground contacts to increase velocity, whereas soft-backbone robots use a lift–jump–fall motion sequence to maximize the translational speeds. These two behaviors are similar between different soft-backbone and rigid-backbone robots; however, the optimal foot contact sequences are different and unpredictable.en_US
dc.description.provenanceSubmitted by Burcu Böke (tburcu@bilkent.edu.tr) on 2022-02-10T10:06:00Z No. of bitstreams: 1 Gait_and_locomotion_analysis_of_a_soft_hybrid_multilegged_modular_miniature_robot.pdf: 4399692 bytes, checksum: f2d7989fe660e2e746c2a528d6731bc6 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-10T10:06:01Z (GMT). No. of bitstreams: 1 Gait_and_locomotion_analysis_of_a_soft_hybrid_multilegged_modular_miniature_robot.pdf: 4399692 bytes, checksum: f2d7989fe660e2e746c2a528d6731bc6 (MD5) Previous issue date: 2021-09-28en
dc.identifier.doi10.1088/1748-3190/ac245een_US
dc.identifier.eissn1748-3190
dc.identifier.issn1748-3182
dc.identifier.urihttp://hdl.handle.net/11693/77216
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.relation.isversionofhttps://doi.org/10.1088/1748-3190/ac245een_US
dc.source.titleBioinspiration & Biomimeticsen_US
dc.subjectMiniature robotsen_US
dc.subjectLegged robotsen_US
dc.subjectModular robotsen_US
dc.subjectRobot dynamicsen_US
dc.subjectBioinspired robotsen_US
dc.subjectGait and locomotion analysisen_US
dc.titleGait and locomotion analysis of a soft-hybrid multilegged modular miniature roboten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gait_and_locomotion_analysis_of_a_soft_hybrid_multilegged_modular_miniature_robot.pdf
Size:
3.82 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: