Immobilization of collagenase in inorganic hybrid nanoflowers with enhanced stability, proteolytic activity, and their anti-amyloid potential

Series

Abstract

Organic-inorganic hybrid nanomaterials are considered as promising immobilization matrix for enzymes owing to their markedly enhanced stability and reusability. Herein, collagenase was chosen as a model enzyme to synthesize collagenase hybrid nanoflowers (Col-hNFs). Maximum collagenase activity (155.58 mu mol min-1 L-1) and encapsulation yield (90 %) were observed in presence of Zn(II) ions at 0.05 mg/mL collagenase, 120 mM zinc chloride and PBS (pH 7.5). Synthesized Col-Zn-hNFs were extensively characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. SEM images showed flower-like morphology with average size of 5.1 mu m and zeta potential of -14.3 mV. Col-Zn-hNFs demonstrated superior relative activity across wide pH and temperature ranges, presence of organic solvents and surfactants as compared to its free form. Moreover, Col-Zn-hNFs exhibited excellent shelf life stability and favorable reusability. Col-Zn-hNFs showed the ability to suppress and eradicate fully developed insulin fibrils in vitro (IC50 = 2.8 and 6.2 mu g/mL, respectively). This indicates a promising inhibitory potential of Col-Zn-hNFs against insulin amyloid fibrillation. The findings suggest that the utilization of Col-Zn-hNFs as a carrier matrix holds immense potential for immobilizing collagenase with improved catalytic properties and biomedical applications.

Source Title

International Journal of Biological Macromolecules

Publisher

Elsevier BV

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English