Reordering orbitals of semiconductor multi-shell quantum dot-quantum well heteronanocrystals
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Based on self-consistent computational modeling of quantum dot-quantum well (QDQW) heteronanocrystals, we propose and demonstrate that conduction-electron and valence-hole orbitals can be reordered by controlling shell thicknesses, unlike widely known core/shell quantum dots (QDs). Multi-shell nanocrystals of CdSe/ZnS/CdSe, which exhibit an electronic structure of 1s-1p-2s-2p-1d-1f for electrons and 1s-1p-2s-2p-1d-2d for holes using thin ZnS and CdSe shells (each with two monolayers), lead to 1s-2s-1p-1d-1f-2p electron-orbitals and 1s-2s-1p-1d-2p-1f hole orbitals upon increasing the shell thicknesses while keeping the same core. This is characteristically different from the only CdSe core and CdSe/ZnS core/shell QDs, both exhibiting only 1s-1p-1d-2s-1f-2p ordering for electrons and holes.