A charge inverter for III-nitride light-emitting diodes

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage133502-5en_US
dc.citation.issueNumber13en_US
dc.citation.spage133502-1en_US
dc.citation.volumeNumber108en_US
dc.contributor.authorZhang Z.-H.en_US
dc.contributor.authorZhang, Y.en_US
dc.contributor.authorBi, W.en_US
dc.contributor.authorGeng, C.en_US
dc.contributor.authorXu S.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.contributor.authorSun, X. W.en_US
dc.date.accessioned2018-04-12T10:47:23Z
dc.date.available2018-04-12T10:47:23Z
dc.date.issued2016en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractIn this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO2 insulator layer on the p+-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p+-GaN and SiO2 insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO2 layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p+-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm2 LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:47:23Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1063/1.4945257en_US
dc.identifier.issn0003-6951
dc.identifier.urihttp://hdl.handle.net/11693/36657
dc.language.isoEnglishen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4945257en_US
dc.source.titleApplied Physics Lettersen_US
dc.subjectCharge injectionen_US
dc.subjectEfficiencyen_US
dc.subjectElectric fieldsen_US
dc.subjectElectric invertersen_US
dc.subjectElectrodesen_US
dc.subjectElectron injectionen_US
dc.subjectGallium nitrideen_US
dc.subjectSemiconductor diodesen_US
dc.subjectWide band gap semiconductorsen_US
dc.subjectExternal quantum efficiencyen_US
dc.subjectHigh-efficiencyen_US
dc.subjectHole transportsen_US
dc.subjectImproved hole injectionen_US
dc.subjectIngan/gan lightemitting diodes (LEDs)en_US
dc.subjectInsulator layeren_US
dc.subjectLocal electric fielden_US
dc.subjectWeak inversion regionen_US
dc.subjectLight emitting diodesen_US
dc.titleA charge inverter for III-nitride light-emitting diodesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A charge inverter for III-nitride light-emitting diodes.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format
Description:
Full printable version