Development of a supervisory controller for residential energy management problems

Series

Abstract

In recent years, the infrastructure that supplies energy to residential areas has started to evolve into a multi-source system, just like in automotive industry in which hybrid electric vehicles (HEVs) have been replacing conventional gasoline vehicles. Multi energy source systems considered as a potential solution for carbon emission problems despite their challenges in their operation due to increased complexity. In this paper, a control design approach successfully applied in the automotive industry is used to solve a residential energy management problem. First, a dynamic programming method is applied to obtain optimal control actions for the representative demand profiles and then by using these results, a causal supervisory controller is developed. It is found that the developed baseline controller performs 1-2% better daily in its initial form in terms of operational costs, compared to available heuristic strategies. © 2012 AACC American Automatic Control Council).

Source Title

Proceedings of the 2012 American Control Conference

Publisher

AACC

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English