Ultra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonator

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage11en_US
dc.citation.issueNumber14538en_US
dc.citation.spage1en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorGhobadi, A.en_US
dc.contributor.authorDereshgi, S. A.en_US
dc.contributor.authorButun, B.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2018-04-12T11:07:34Z
dc.date.available2018-04-12T11:07:34Z
dc.date.issued2017en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractIn this paper, we propose a simple design with an excellent performance to obtain high contrast in transmission asymmetry based on dielectric microspheres. Initially, we scrutinize the impact of the sphere radius on forward and backward transmissions. Afterward, by introducing a capping layer on top of the sphere, transmission response for the backward illuminated light will be blocked. In the next step, in order to replace the reflecting metal cap with a metal free absorbing design, we adopt a modeling approach based on the transfer matrix method (TMM) to explore an ideal material to achieve metal free perfect absorption in a multilayer configuration of material-insulator-material-insulator (MIMI). As a result of our investigations, it is found that Titanium Nitride (TiN) is an excellent alternative to replace metal in a MIMI multilayer stack. Setting this stack as the top capping coating, we obtain a high contrast between forward and backward light transmission where in an ultra-broadband range of 400 nm-1000 nm, forward transmission is above 0.85 while its backward response stays below 0.2. Moreover, due to the existence of multilayer stack, a high asymmetry is also observed for absorption profiles. This design has a relatively simple and large scale compatible fabrication route. © 2017 The Author(s).en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:07:34Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1038/s41598-017-15248-1en_US
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11693/37258
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41598-017-15248-1en_US
dc.source.titleScientific Reportsen_US
dc.titleUltra-broadband asymmetric light transmission and absorption through the use of metal free multilayer capped dielectric microsphere resonatoren_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ultra-broadband Asymmetric Light Transmission and Absorption Through The Use of Metal Free Multilayer Capped Dielectric Microsphere Resonator.pdf
Size:
4.47 MB
Format:
Adobe Portable Document Format
Description:
Full printable version