Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation

buir.contributor.authorÖnses, M. Serdar
dc.citation.volumeNumber380en_US
dc.contributor.authorAltıntaş, Y.
dc.contributor.authorTorun, İ.
dc.contributor.authorYazıcı, A. F.
dc.contributor.authorBeşkazak, E.
dc.contributor.authorErdem, T.
dc.contributor.authorÖnses, M. Serdar
dc.date.accessioned2021-02-20T13:47:19Z
dc.date.available2021-02-20T13:47:19Z
dc.date.issued2020-08-12
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractInorganic perovskite nanocrystals (PNCs) offer the ability to precisely but also flexibly control the peak emission wavelength while also possessing narrow-band emission spectra and high quantum yields. Owing to these features, PNCs have been already employed as color converters on LEDs. Nevertheless, the anion exchange reactions that prevent the blending of perovskites of different colors remain as an important bottleneck. As a remedy to this issue, here we employ additive jet printing to form separated stripes of these nanocrystals. Within this framework, we first present the synthesis of CsPbBr3 and CsPbBrxI3−x nanocrystals spanning the whole visible regime and optimize the cleaning procedure to obtain PNCs possessing photoluminescence quantum yields as high as 91% and emission linewidths as narrow as 15 nm, making them suitable for high quality white light generation. Next, we employ electrohydrodynamic jet printing to form closely spaced stripes of PNCs of various colors and integrated these films with a blue LED to create a white LED. Our proof-of-concept LED achieves high photometric performance as it possesses a color rendering index of 91.3, luminous efficacy of optical radiation > 300 lm/Wopt, and correlated color temperature of ca. 7000 K. We believe that additive jet printing technique will pave the way for a ubiquitous use of these PNCs in light-emitting devices in the near future.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-20T13:47:19Z No. of bitstreams: 1 Multiplexed_patterning_of_cesium_lead_halide_perovskite_nanocrystals_by_additive_jet_printing_for_efficient_white_light_generation.pdf: 2697419 bytes, checksum: 49e35f7fbecb9f31b761dad9e4f23aa8 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-20T13:47:19Z (GMT). No. of bitstreams: 1 Multiplexed_patterning_of_cesium_lead_halide_perovskite_nanocrystals_by_additive_jet_printing_for_efficient_white_light_generation.pdf: 2697419 bytes, checksum: 49e35f7fbecb9f31b761dad9e4f23aa8 (MD5) Previous issue date: 2020-08-12en
dc.embargo.release2022-08-12
dc.identifier.doi10.1016/j.cej.2019.122493en_US
dc.identifier.issn1385-8947
dc.identifier.urihttp://hdl.handle.net/11693/75505
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.cej.2019.122493en_US
dc.source.titleChemical Engineering Journalen_US
dc.subjectPerovskite nanocrystalsen_US
dc.subjectAnion exchange reactionen_US
dc.subjectElectrohydrodynamic jet printingen_US
dc.subjectWhite LEDen_US
dc.titleMultiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generationen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multiplexed_patterning_of_cesium_lead_halide_perovskite_nanocrystals_by_additive_jet_printing_for_efficient_white_light_generation.pdf
Size:
2.57 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: