Efficient exciton transfer from an epitaxial quantum well to an energy gradient structure composed of layer-by-layer assembled colloidal quantum dots

buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.issueNumber1en_US
dc.citation.volumeNumber57en_US
dc.contributor.authorNizamoğlu, Sedaten_US
dc.contributor.authorHernandez-Martinez, Pedro L.en_US
dc.contributor.authorMutlugün, Evrenen_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.coverage.spatialBoston, Massachusettsen_US
dc.date.accessioned2019-07-03T07:48:08Z
dc.date.available2019-07-03T07:48:08Z
dc.date.issued2012en_US
dc.departmentDepartment of Physicsen_US
dc.descriptionDate of Conference: 27 February – 2 March 2012en_US
dc.description.abstractEfficient Exciton Transfer from an Epitaxial Quantum Well to an Energy Gradient Structure Composed of Layer-by-Layer Assembled Colloidal Quantum Dots SEDAT NIZAMOGLU1 , Bilkent University, PEDRO LUDWIG HERNANDEZ MARTINEZ, Bilkent University, Nanyang Technological University, EVREN MUTLUGUN, Bilkent University, HILMI VOLKAN DEMIR, Bilkent University, Nanyang Technological University — In this work, we study exciton migration from a violet-emitting epitaxial quantum well (QW) to an energy gradient structure that consists of layer-by-layer assembled, green- and red-emitting quantum dot (QD) bilayer. In the experimental study, the energy gradient of these green and red QDs provides an increase of 64.2% in the exciton transfer efficiency with respect to the bilayer of only red-emitting QDs. These results suggest that the energy difference between the QD layers significantly boosts the QW-QD exciton transfer rate compared to the mono-dispersed case. To support this experimental observation, we propose a theoretical model based on optical near field and density matrix to investigate the effects of energy difference between the QD layers. The strong exciton transfer from the epitaxial QWs to the colloidal QDs is essential to the energy efficiency of hybrid optoelectronic devices [1-3]. [1] A. Ruland, et al., Adv. Mater. 23, 4573–4577 (2011). [2] M. Naruse, et al., Phys. Rev. 82, 125417 (2010). [3] S. Nizamoglu, et al., Appl. Phys. Lett. 98, 163108 (2011).en_US
dc.description.provenanceSubmitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2019-07-03T07:48:08Z No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-07-03T07:48:08Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2012en
dc.identifier.urihttp://hdl.handle.net/11693/52103
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://meetings.aps.org/link/BAPS.2012.MAR.A18.10en_US
dc.source.titleAmerican Physical Society March Meeting 2012en_US
dc.titleEfficient exciton transfer from an epitaxial quantum well to an energy gradient structure composed of layer-by-layer assembled colloidal quantum dotsen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bilkent-research-paper.pdf
Size:
217.65 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: