Hybrid surface plasmon polaritons in graphene coupled anisotropic van der Waals material waveguides

buir.contributor.authorHajian, Hodjat
buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidHajian, Hodjat|0000-0001-6564-6273
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage9en_US
dc.citation.spage1en_US
dc.citation.volumeNumber54en_US
dc.contributor.authorHajian, Hodjat
dc.contributor.authorRukhlenko, I. D.
dc.contributor.authorHanson, G. W.
dc.contributor.authorÖzbay, Ekmel
dc.date.accessioned2022-02-09T10:19:14Z
dc.date.available2022-02-09T10:19:14Z
dc.date.issued2021-08-23
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractPolaritons in anisotropic van der Waals materials (AvdWMs), with either hyperbolic or elliptical topologies, have garnered significant attention due to their ability of field confinement and many useful applications in in-plane polariton nanophotonics, including directional guiding, canalization, and hyperlensing. Here, we obtain the dispersion relation of hybrid surface plasmon polaritons (SPPs) supported by a parallel-plate waveguide composed of an AvdWM, as an example tungsten ditelluride, that is coupled with a graphene layer. Through analytical calculations and numerical simulations, we first investigate the impact of losses on the modal characteristics of SPPs supported by the AvdWM. We then show that the coupling of the anisotropic layer to a graphene sheet in a parallel-plate waveguide heterostructure allows one to control the in-plane propagation and dispersion topology of the hybrid SPPs by changing the spacer thickness and the graphene chemical potential. Moreover, it is found that owing to the different coupling regimes, this anisotropic-isotropic SPPs hybridization can enhance the propagation length and spatial localization of the guided modes. We believe this approach can lead to the realization of vdW heterostructures with improved functionalities for in-plane and out-of-plane infrared nanophotonics.en_US
dc.identifier.doi10.1088/1361-6463/ac1bd5en_US
dc.identifier.eissn1361-6463
dc.identifier.issn0022-3727
dc.identifier.urihttp://hdl.handle.net/11693/77162
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.relation.isversionofhttps://doi.org/10.1088/1361-6463/ac1bd5en_US
dc.source.titleJournal of Physics D: Applied Physicsen_US
dc.subjectAnisotropicen_US
dc.subjectVan der Waals materialsen_US
dc.subjectGrapheneen_US
dc.subjectSurface plasmon polaritonsen_US
dc.subjectDispersion topologyen_US
dc.titleHybrid surface plasmon polaritons in graphene coupled anisotropic van der Waals material waveguidesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hybrid_surface_plasmon_polaritons_in_graphene_coupled_anisotropic_van_der_Waals_material_waveguides.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: