Highly efficient semiconductor-based metasurface for photoelectrochemical water splitting: broadband light perfect absorption with dimensions smaller than the diffusion length

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Plasmonics

Print ISSN

1557-1955

Electronic ISSN

Publisher

Springer

Volume

15

Issue

3

Pages

829 - 839

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In this paper, we demonstrate a highly efficient light trapping design that is made of a metal-oxide-semiconductor-semiconductor (nanograting/nanopatch) (MOSSg/p) four-layer design to absorb light in a broad wavelength regime in dimensions smaller than the hole diffusion length of the active layer. For this aim, we first adopt a modeling approach based on the transfer matrix method (TMM) to find out the absorption bandwidth (BW) limits of a simple hematite (α-Fe2O3)-based metal-oxide-semiconductor (MOS) cavity design. Our modeling findings show that this design architecture can provide near-perfect absorption in shorter wavelengths. To extend the absorption toward longer wavelengths, a nanostructured semiconductor is placed on top of this MOS design. This nanostructure supports the Mie resonance and adds a new resonance in longer wavelengths without disrupting the lower wavelength absorption capability of MOS cavity. By this way, a polarization-insensitive absorption above 0.8 can be acquired up to λ=565 nm. Moreover, to have a better qualitative comparison, the water-splitting photocurrent of this design has been estimated. Our calculations show that a photocurrent as high as 10.6 mA cm−2 can be achieved with this design that is quite close to the theoretical limit of 12.5 mA cm−2 for hematite-based water-splitting photoanode. This paper proposes a design approach in which the superposition of cavity modes and Mie resonances can lead to a broadband, polarization-insensitive, and omnidirectional near-perfect light absorption in dimensions smaller than the carrier’s diffusion length. This can be considered as a winning strategy to design highly efficient and ultrathin optoelectronic designs in a variety of applications including photoelectrochemical water splitting and photovoltaics.

Course

Other identifiers

Book Title

Citation