Microscopic image classification via WT-based covariance descriptors using Kullback-Leibler distance

buir.contributor.authorÇetin, A. Enis
buir.contributor.orcidÇetin, A. Enis|0000-0002-3449-1958
dc.citation.epage2082en_US
dc.citation.spage2079en_US
dc.contributor.authorKeskin, Furkanen_US
dc.contributor.authorÇetin, A. Enisen_US
dc.contributor.authorErşahin, Tülinen_US
dc.contributor.authorÇetin-Atalay, Rengülen_US
dc.coverage.spatialSeoul, South Koreaen_US
dc.date.accessioned2016-02-08T12:12:47Z
dc.date.available2016-02-08T12:12:47Z
dc.date.issued2012en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 20-23 May 2012en_US
dc.description.abstractIn this paper, we present a novel method for classification of cancer cell line images using complex wavelet-based region covariance matrix descriptors. Microscopic images containing irregular carcinoma cell patterns are represented by randomly selected subwindows which possibly correspond to foreground pixels. For each subwindow, a new region descriptor utilizing the dual-tree complex wavelet transform coefficients as pixel features is computed. WT as a feature extraction tool is preferred primarily because of its ability to characterize singularities at multiple orientations, which often arise in carcinoma cell lines, and approximate shift invariance property. We propose new dissimilarity measures between covariance matrices based on Kullback-Leibler (KL) divergence and L 2-norm, which turn out to be as successful as the classical KL divergence, but with much less computational complexity. Experimental results demonstrate the effectiveness of the proposed image classification framework. The proposed algorithm outperforms the recently published eigenvalue-based Bayesian classification method. © 2012 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:12:47Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012en
dc.identifier.doi10.1109/ISCAS.2012.6271692en_US
dc.identifier.urihttp://hdl.handle.net/11693/28162
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ISCAS.2012.6271692en_US
dc.source.titleISCAS 2012 - 2012 IEEE International Symposium on Circuits and Systemsen_US
dc.subjectBayesian classificationen_US
dc.subjectCancer cell linesen_US
dc.subjectCarcinoma cell linesen_US
dc.subjectCarcinoma cellsen_US
dc.subjectClassification frameworken_US
dc.subjectCovariance matricesen_US
dc.subjectDescriptorsen_US
dc.subjectDissimilarity measuresen_US
dc.subjectDual-tree complex wavelet transformen_US
dc.subjectKL-divergenceen_US
dc.subjectKullback-Leibler distanceen_US
dc.subjectKullback-Leibler divergenceen_US
dc.subjectMicroscopic imageen_US
dc.subjectMultiple orientationsen_US
dc.subjectRegion covariance matrixesen_US
dc.subjectShift invarianceen_US
dc.subjectCell cultureen_US
dc.subjectCovariance matrixen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.subjectFeature extractionen_US
dc.subjectImage classificationen_US
dc.subjectPixelsen_US
dc.titleMicroscopic image classification via WT-based covariance descriptors using Kullback-Leibler distanceen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Microscopic image classification via WT-based covariance descriptors using Kullback-Leibler distance.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
Full printable version