Domain formation on oxidized graphene

buir.contributor.authorÇıracı, Salim
buir.contributor.orcidÇıracı, Salim|0000-0001-8023-9860
dc.citation.epage205402-11en_US
dc.citation.issueNumber20en_US
dc.citation.spage205402-1en_US
dc.citation.volumeNumber86en_US
dc.contributor.authorTopsakal, M.en_US
dc.contributor.authorÇıracı, Salimen_US
dc.date.accessioned2015-07-28T12:05:14Z
dc.date.available2015-07-28T12:05:14Z
dc.date.issued2012-11-01en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractAbstract Using first-principles calculations within density functional theory, we demonstrate that the adsorption of a single oxygen atom results in significant electron transfer from graphene to oxygen. This strongly disturbs the charge landscape of the C-C bonds at the proximity. Additional oxygen atoms adsorbing to graphene prefer always the C-C bonds having the highest charge density and, consequently, they have the tendency to form domain structure. While oxygen adsorption to one side of graphene ends with significant buckling, the adsorption to both sides with similar domain pattern is favored. The binding energy displays an oscillatory variation and the band gap widens with increasing oxygen coverage. While a single oxygen atom migrates over the C-C bonds on the graphene surface, a repulsive interaction prevents two oxygen adatoms from forming an oxygen molecule. Our first-principles study together with finite-temperature ab initio molecular dynamics calculations conclude that oxygen adatoms on graphene can not desorb easily without the influence of external agents.en_US
dc.identifier.doi10.1103/PhysRevB.86.205402en_US
dc.identifier.issn1098-0121
dc.identifier.urihttp://hdl.handle.net/11693/13225
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.86.205402en_US
dc.source.titlePhysical Review Ben_US
dc.subject61.48.Ghen_US
dc.subject81.16.Pren_US
dc.subject61.50.Ahen_US
dc.titleDomain formation on oxidized grapheneen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1103-PhysRevB.86.205402.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Description:
Full printable version