Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser

buir.contributor.authorKalantarifard, Fatemeh
buir.contributor.authorElahi, Parviz
buir.contributor.authorMakey, Ghaith
buir.contributor.authorİlday, F. Ömer
buir.contributor.authorVolpe, Giovanni
dc.citation.epage11en_US
dc.citation.issueNumber1en_US
dc.citation.spage1en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorKalantarifard, Fatemehen_US
dc.contributor.authorElahi, Parvizen_US
dc.contributor.authorMakey, Ghaithen_US
dc.contributor.authorİlday, F. Ömeren_US
dc.contributor.authorVolpe, Giovannien_US
dc.contributor.authorMaragò, O. M.en_US
dc.date.accessioned2020-02-10T13:31:52Z
dc.date.available2020-02-10T13:31:52Z
dc.date.issued2019-06
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractStandard optical tweezers rely on optical forces arising when a focused laser beam interacts with a microscopic particle: scattering forces, pushing the particle along the beam direction, and gradient forces, attracting it towards the high-intensity focal spot. Importantly, the incoming laser beam is not affected by the particle position because the particle is outside the laser cavity. Here, we demonstrate that intracavity nonlinear feedback forces emerge when the particle is placed inside the optical cavity, resulting in orders-of-magnitude higher confinement along the three axes per unit laser intensity on the sample. This scheme allows trapping at very low numerical apertures and reduces the laser intensity to which the particle is exposed by two orders of magnitude compared to a standard 3D optical tweezers. These results are highly relevant for many applications requiring manipulation of samples that are subject to photodamage, such as in biophysics and nanosciences.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2020-02-10T13:31:52Z No. of bitstreams: 1 Intracavity_optical_trapping_of_microscopic_particles_in_a_ring-cavity_fiber_laser.pdf: 1717863 bytes, checksum: f6d86845371a1cdacf8becba25bdbbc9 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-10T13:31:52Z (GMT). No. of bitstreams: 1 Intracavity_optical_trapping_of_microscopic_particles_in_a_ring-cavity_fiber_laser.pdf: 1717863 bytes, checksum: f6d86845371a1cdacf8becba25bdbbc9 (MD5) Previous issue date: 2019-06en
dc.identifier.doi10.1038/s41467-019-10662-7en_US
dc.identifier.eissn2041-1723
dc.identifier.urihttp://hdl.handle.net/11693/53237
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttps://doi.org/10.1038/s41467-019-10662-7en_US
dc.source.titleNature Communicationsen_US
dc.subjectMicroscopyen_US
dc.subjectOptical manipulation and tweezersen_US
dc.titleIntracavity optical trapping of microscopic particles in a ring-cavity fiber laseren_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Intracavity_optical_trapping_of_microscopic_particles_in_a_ring-cavity_fiber_laser.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description: