Observation of optical gain from aqueous quantum well heterostructures in water

Date

2022-09-25

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Nanoscale

Print ISSN

Electronic ISSN

2040-3372

Publisher

Royal Society of Chemistry

Volume

40

Issue

14

Pages

14895 - 14901

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Although achieving optical gain using aqueous solutions of colloidal nanocrystals as a gain medium is exceptionally beneficial for bio-optoelectronic applications, the realization of optical gain in an aqueous medium using solution-processed nanocrystals has been extremely challenging because of the need for surface modification to make nanocrystals water dispersible while still maintaining their gain. Here, we present the achievement of optical gain in an aqueous medium using an advanced architecture of CdSe/CdS@CdxZn1−xS core/crown@gradient-alloyed shell colloidal quantum wells (CQWs) with an ultralow threshold of ∼3.4 μJ cm−2 and an ultralong gain lifetime of ∼2.6 ns. This demonstration of optical gain in an aqueous medium is a result of the carefully heterostructured CQWs having large absorption cross-section and gain cross-section in addition to inherently slow Auger recombination in these CQWs. Furthermore, we show low-threshold in-water amplified spontaneous emission (ASE) from these aqueous CQWs with a threshold of 120 μJ cm−2. In addition, we demonstrate a whispering gallery mode laser with a low threshold of ∼30 μJ cm−2 obtained by incorporating films of CQWs by exploiting layer-by-layer approach on a fiber. The observation of low-threshold optical gain with ultralong gain lifetime presents a significant step toward the realization of advanced optofluidic colloidal lasers and their continuous-wave pumping.

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)