Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons

Date

2008

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review B - Condensed Matter and Materials Physics

Print ISSN

1098-0121

Electronic ISSN

Publisher

American Physical Society

Volume

77

Issue

19

Pages

195434-1 - 195434-7

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In this paper, we theoretically studied the electronic and magnetic properties of graphene and graphene nanoribbons functionalized by 3d transition-metal (TM) atoms. The binding energies and electronic and magnetic properties were investigated for the cases where TM atoms adsorbed to a single side and double sides of graphene. We found that 3d TM atoms can be adsorbed on graphene with binding energies ranging between 0.10 and 1.95 eV depending on their species and coverage density. Upon TM atom adsorption, graphene becomes a magnetic metal. TM atoms can also be adsorbed on graphene nanoribbons with armchair edge shapes (AGNR's). Binding of TM atoms to the edge hexagons of AGNR yields the minimum energy state for all TM atom species examined in this work and in all ribbon widths under consideration. Depending on the ribbon width and adsorbed TM atom species, AGNR, which is a nonmagnetic semiconductor, can either be a metal or a semiconductor with ferromagnetic or antiferromagnetic spin alignment. Interestingly, Fe or Ti adsorption makes certain AGNR's half-metallic with a 100% spin polarization at the Fermi level. Present results indicate that the properties of graphene and graphene nanoribbons can be strongly modified through the adsorption of 3d TM atoms.

Course

Other identifiers

Book Title

Keywords

Citation