Attributes2Classname: a discriminative model for attribute-based unsupervised zero-shot learning

dc.citation.epage1250en_US
dc.citation.spage1241en_US
dc.contributor.authorDemirel, B.en_US
dc.contributor.authorCinbiş, Ramazan Gökberken_US
dc.contributor.authorİkizler-Cinbiş, N.en_US
dc.coverage.spatialVenice, Italy
dc.date.accessioned2018-04-12T11:46:11Z
dc.date.available2018-04-12T11:46:11Z
dc.date.issued2017-10en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionDate of Conference: 22-29 Oct. 2017
dc.descriptionConference name: IEEE International Conference on Computer Vision (ICCV) 2017
dc.description.abstractWe propose a novel approach for unsupervised zero-shot learning (ZSL) of classes based on their names. Most existing unsupervised ZSL methods aim to learn a model for directly comparing image features and class names. However, this proves to be a difficult task due to dominance of non-visual semantics in underlying vector-space embeddings of class names. To address this issue, we discriminatively learn a word representation such that the similarities between class and combination of attribute names fall in line with the visual similarity. Contrary to the traditional zero-shot learning approaches that are built upon attribute presence, our approach bypasses the laborious attributeclass relation annotations for unseen classes. In addition, our proposed approach renders text-only training possible, hence, the training can be augmented without the need to collect additional image data. The experimental results show that our method yields state-of-the-art results for unsupervised ZSL in three benchmark datasets. © 2017 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:46:11Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1109/ICCV.2017.139en_US
dc.identifier.urihttp://hdl.handle.net/11693/37629en_US
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/ICCV.2017.139en_US
dc.source.titleProceedings of the IEEE International Conference on Computer Visionen_US
dc.subjectSemanticsen_US
dc.subjectVector spacesen_US
dc.subjectAttribute-baseden_US
dc.subjectBenchmark datasetsen_US
dc.subjectDiscriminative modelsen_US
dc.subjectImage featuresen_US
dc.subjectLearning approachen_US
dc.subjectState of the arten_US
dc.subjectVisual similarityen_US
dc.subjectWord representationsen_US
dc.subjectComputer visionen_US
dc.titleAttributes2Classname: a discriminative model for attribute-based unsupervised zero-shot learningen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Attributes2Classname_a_discriminative_model_for_attribute_based_unsupervised_zero_shot_learning.pdf
Size:
1016.5 KB
Format:
Adobe Portable Document Format
Description: