Attributes2Classname: a discriminative model for attribute-based unsupervised zero-shot learning

Series

Abstract

We propose a novel approach for unsupervised zero-shot learning (ZSL) of classes based on their names. Most existing unsupervised ZSL methods aim to learn a model for directly comparing image features and class names. However, this proves to be a difficult task due to dominance of non-visual semantics in underlying vector-space embeddings of class names. To address this issue, we discriminatively learn a word representation such that the similarities between class and combination of attribute names fall in line with the visual similarity. Contrary to the traditional zero-shot learning approaches that are built upon attribute presence, our approach bypasses the laborious attributeclass relation annotations for unseen classes. In addition, our proposed approach renders text-only training possible, hence, the training can be augmented without the need to collect additional image data. The experimental results show that our method yields state-of-the-art results for unsupervised ZSL in three benchmark datasets. © 2017 IEEE.

Source Title

Proceedings of the IEEE International Conference on Computer Vision

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English