X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell

dc.citation.epage542en_US
dc.citation.issueNumber2en_US
dc.citation.spage537en_US
dc.citation.volumeNumber25en_US
dc.contributor.authorKetenoglu, D.en_US
dc.contributor.authorSpiekermann, G.en_US
dc.contributor.authorHarder, M.en_US
dc.contributor.authorOz, E.en_US
dc.contributor.authorKoz, C.en_US
dc.contributor.authorYagci, M. C.en_US
dc.contributor.authorYilmaz, E.en_US
dc.contributor.authorYin, Z.en_US
dc.contributor.authorSahle, C. J.en_US
dc.contributor.authorDetlefs, B.en_US
dc.contributor.authorYavaş, H.en_US
dc.date.accessioned2019-02-21T16:04:03Z
dc.date.available2019-02-21T16:04:03Z
dc.date.issued2018en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractThe effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue-shift of both the π∗ feature in the carbon edge and the carbonyl π∗ feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.Electronic structures of commonly used lithium-ion battery electrolyte solutions measured by non-resonant inelastic X-ray scattering method are presented.
dc.description.sponsorshipFunding for this research was provided by: Türkiye Atom Enerjisi Kurumu (SESAME grant to DK; SESAME grant to MCY); Türkiye Bilimsel ve Teknolojik Aras¸tirma Kurumu (BIDEB-2219 Postdoctoral Research Fellowship to DK; (TUBITAK project 115M375 to MCY); Deutsche Forschungsgemeinschaft (SFB 755 ‘Nanoscale Photonic Imaging’ project B06 and B10 to ZY; SFB 1073 ‘Atomic Scale Control of Energy Conversion’ project C02 to ZY); Ankara University Institute of Accelerator Technologies (TARLA project 2006K-120470 to EO).
dc.embargo.release2019-01-28en_US
dc.identifier.doi10.1107/S1600577518001662
dc.identifier.issn0909-0495
dc.identifier.urihttp://hdl.handle.net/11693/50156
dc.language.isoEnglish
dc.publisherWiley-Blackwell
dc.relation.isversionofhttps://doi.org/10.1107/S1600577518001662
dc.relation.projectDeutsches Elektronen-Synchrotron, DESY - CH-4573 - I-20150599 - Helmholtz Association - Institute of Infection and Immunity, III: P01 - Human Growth Foundation, HGF - 2006K-120470 - Deutsche Forschungsgemeinschaft, DFG: B10 - Deutsche Forschungsgemeinschaft, DFG: B06 - Deutsche Forschungsgemeinschaft, DFG: SFB 755 - Deutsche Forschungsgemeinschaft, DFG: SFB 1073 - 115M375
dc.source.titleJournal of Synchrotron Radiationen_US
dc.subjectC and O K-edge spectraen_US
dc.subjectLithium-ion battery electrolyteen_US
dc.subjectNon-resonant inelastic X-ray scatteringen_US
dc.titleX-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cellen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
X_ray_Raman_spectroscopy_of_lithium_ion_battery_electrolyte_solutions_in_a_flow_cell.pdf
Size:
920.96 KB
Format:
Adobe Portable Document Format
Description:
Full printable version