Plasmon-enhanced energy transfer in photosensitive nanocrystal device

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage5439en_US
dc.citation.issueNumber6en_US
dc.citation.spage5430en_US
dc.citation.volumeNumber11en_US
dc.contributor.authorAkhavan S.en_US
dc.contributor.authorAkgul, M. Z.en_US
dc.contributor.authorHernandez-Martinez, P. L.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2018-04-12T11:08:33Z
dc.date.available2018-04-12T11:08:33Z
dc.date.issued2017en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractFörster resonance energy transfer (FRET) interacted with localized surface plasmon (LSP) gives us the ability to overcome inadequate transfer of energy between donor and acceptor nanocrystals (NCs). In this paper, we show LSP-enhanced FRET in colloidal photosensors of NCs in operation, resulting in substantially enhanced photosensitivity. The proposed photosensitive device is a layered self-assembled colloidal platform consisting of separated monolayers of the donor and the acceptor colloidal NCs with an intermediate metal nanoparticle (MNP) layer made of gold interspaced by polyelectrolyte layers. Using LBL assembly, we fabricated and comparatively studied seven types of such NC-monolayer devices (containing only donor, only acceptor, Au MNP-donor, Au MNP-acceptor, donor-acceptor bilayer, donor-Au MNP-acceptor trilayer, and acceptor-Au MNP-donor reverse trilayer). In these structures, we revealed the effect of LSP-enhanced FRET and exciton interactions from the donor NCs layer to the acceptor NCs layer. Compared to a single acceptor NC device, we observed a significant extension in operating wavelength range and a substantial photosensitivity enhancement (2.91-fold) around the LSP resonance peak of Au MNPs in the LSP-enhanced FRET trilayer structure. Moreover, we present a theoretical model for the intercoupled donor-Au MNP-acceptor structure subject to the plasmon-mediated nonradiative energy transfer. The obtained numerical results are in excellent agreement with the systematic experimental studies done in our work. The potential to modify the energy transfer through mastering the exciton-plasmon interactions and its implication in devices make them attractive for applications in nanophotonic devices and sensors.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:08:33Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1021/acsnano.6b08392en_US
dc.identifier.issn1936-0851
dc.identifier.urihttp://hdl.handle.net/11693/37282
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acsnano.6b08392en_US
dc.source.titleACS Nanoen_US
dc.subjectExcitonsen_US
dc.subjectLBL assemblyen_US
dc.subjectLocalized plasmonsen_US
dc.subjectNanocrystalsen_US
dc.subjectNonradiative energy transferen_US
dc.subjectPhotosensorsen_US
dc.subjectSemiconductor quantum dotsen_US
dc.titlePlasmon-enhanced energy transfer in photosensitive nanocrystal deviceen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device.pdf
Size:
3.4 MB
Format:
Adobe Portable Document Format
Description:
Full printable version